Cohomology of U(2, 1) Representation Varieties of Surface Groups

نویسندگان

  • RICHARD A. WENTWORTH
  • GRAEME WILKIN
چکیده

In this paper we use the Morse theory of the Yang-Mills-Higgs functional on the singular space of Higgs bundles on Riemann surfaces to compute the equivariant cohomology of the space of semistable U(2, 1) and SU(2, 1) Higgs bundles with fixed Toledo invariant. In the non-coprime case this gives new results about the topology of the U(2, 1) and SU(2, 1) character varieties of surface groups. The main results are a calculation of the equivariant Poincaré polynomials, a Kirwan surjectivity theorem in the non-fixed determinant case, and a description of the action of the Torelli group on the equivariant cohomology of the character variety. This builds on earlier work for stable pairs and rank 2 Higgs bundles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Week 2: Betti Cohomology of Shimura Varieties — the Matsushima Formula

Rough exposition of the goal of this course. Hecke actions on Shimura varieties and their cohomology groups. The Matsushima formula in the classical setting; relative Lie algebra cohomology, spectral decomposition on L(Γ\G). The Matsushima formula in the adelic setting — automorphic representations appear in the Betti cohomology of Shimura varieties. Admissible (g, U)-modules and cohomological ...

متن کامل

Mazur’s principle for U(2,1) Shimura varieties

Mazur’s principle gives a criterion under which an irreducible mod l Galois representation arising from a classical modular form of level Np (with p prime to N) also arises from a classical modular form of level N . We consider the analogous question for Galois representations arising from certain unitary Shimura varieties. In particular, we prove an analogue of Mazur’s principle for U(2, 1) Sh...

متن کامل

Motifs, L-Functions, and the K-Cohomology of Rational Surfaces over Finite Fields

Let X be a smooth projective variety over a field. Let ~f~ denote the Zariski sheaf associated to the presheaf U ~-, Kj(F(U, Cv)) of Quillen K-groups. The collection of Zariski cohomology groups H~(X, ~Fj) will be referred to as the K-cohomology of X. The groups contain a great deal of information about the geometry of X. For example, Bloch's formula [11] says that Hi(X, ~ ) is isomorphic to th...

متن کامل

Geometric category O and symplectic duality

The purpose of this proposal is to study algebraic symplectic varieties, which arise naturally in algebraic geometry (Hilbert schemes), representation theory (quiver varieties, Springer theory), combinatorics and polyhedral geometry (hypertoric varieties), and string theory (moduli spaces of gauge theories and of Higgs bundles). Our primary interest will be a certain category of sheaves on thes...

متن کامل

Categorified quantum sl(2) and equivariant cohomology of iterated flag varieties

A 2-category was introduced in math.QA/0803.3652 that categorifies Lusztig’s integral version of quantum sl(2). Here we construct for each positive integer N a representation of this 2-category using the equivariant cohomology of iterated flag varieties. This representation categorifies the irreducible (N + 1)-dimensional representation of quantum sl(2).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012